728x90 300x250 BGE1 LLM기반 임베딩 모델, bge 리랭커 모델 'bge-reranker-v2-gemma' 리랭커 모델 소개 이 포스트에서는 'bge-m3'를 기반으로 한 '리랭커' 모델을 살펴보겠습니다. 기존의 '임베딩' 모델과는 달리 '리랭커' 모델은 질문과 문서를 입력으로 받아들이고 유사도를 출력합니다. 다른 임베딩 모델과는 달리, 리랭커는 질문과 문서를 입력으로 사용하며, 임베딩 대신 유사도를 직접 출력합니다. 리랭커는 쿼리와 메시지를 입력으로 받으면 관련성 점수를 계산하며, 이 점수는 시그모이드 함수를 사용하여 [0,1] 범위의 부동 소수점 값으로 매핑될 수 있습니다. 또한, 다국어를 지원하기 위해 BAAI/bge-reranker-v2-m3와 BAAI/bge-reranker-v2-gemma 두 가지 버전이 존재합니다. gemma 버전은 LLM(Large Language Model) 기반의 리랭커 LL.. 2024. 4. 2. 이전 1 다음 728x90 300x250